

EDTest-Controller EDT100BRD 0288.00728

Artikel: EDT100BRD

WesTest GmbH Hegelsbergstr. 21

34127 Kassel

Tel.: 0561/98975-0 Fax: 0561/98975-90 www.westest.de

0

INHALT

1	Anv	vendung	. 4
	1.1	Spezifikation	. 4
	1.2	Testumgebung	. 4
	1.3	Funktion	. 5
	1.3.	1 M60 Measure-Schnittstelle	. 5
2	Sys	tem-Schnittstellen	. 6
	2.1	Versorgung	. 6
	2.2	Bedienelemente	. 6
	2.3	Not-Aus und Start (X16)	. 7
	2.4	PC/USB (X19)	. 7
	2.5	UserC User-Schnittstelle (X1)	. 8
	2.6	M60 Measure-Schnittstelle (X2)	. 8
	2.7	ExtC ExtensionControl (X10)	. 8
	2.8	Programmier-Schnittstelle (X11)	. 9
	2.9	Hex-Switch und Jumper Block (X15X18)	. 9
3	Sys	tem-Kommandos	10
	3.1	System	10
	3.2	Speicher	11
4	Kon	nmandos	13
	4.1	Spannungsquelle	13
	4.2	Analogausgang	14
	4.3	Digital – I/O	15
	4.4	Digital – Schnittstellen	19
	4.5	Signalgeneratoren	20
	4.6	Relais-Multiplexer	22
	4.7	Analog – Messtechnik	23
	4.8	Serielle Schnittstellen	25
	4.9	User – Interface	27
5	Inst	allation	29
6	Anh	ang	29
	6.1	Blockschaltbild	29
	6.2	Schaltplan	29
	6.3	Bestückungsdruck	29
	6.4	MeasureBus - Steckerbelegung	29

Dokument- History

Version	Ersteller	Bemerkung/ Änderungen	Version EDT100 Firmware	Datum
1.00	J. Sommer	Basisdokument	0.1.01	08/09/2010
1.01	U. Metzkow	Bedienungselemente	0.1.01	08/10/2010
1.02	J. Sommer	Ergänzungen technische Daten / Befehle	0.1.01	18/10/2010
1.03	J. Sommer	Anpassung Hardware 1.1	1.0.00	07/12/2010
1.04	J. Sommer	Steckerbelegung hinzugefügt	1.0.00	31/01/2011
1.05	V. Endtricht	Anpassungen Hardware v1.6		07/03/2015
1.06	A. Kricke	Steckerbelegung von X9 geändert, aktuelles Foto, Optimierungen	1.0.08	10/05/2016
1.07	U.Metzkow	Formatanpassung, Ergänzung Datenblatt	1.0.08	17/10/2016
1.08	J. Sommer	Steuerung der OK/NOK Tasten LEDs	1.1.00	05/05/2017

1 Anwendung

Das EDTest-Controller_Board EDT100 bietet zur Funktionsprüfung eine Mindestausstattung an Instrumenten zur Versorgung, Stimulation und Reaktionsmesstechnik. Zur Stimulation werden beispielsweise Spannungsquellen, Signalgeneratoren und zur Reaktionsmessung Analog-Messwertaufnehmer und digitale Eingänge bereitgestellt.

Weitere Instrumente können als EDTest-ExtensionModule an die ExtControl-Schnittstelle oder an den PC (USB) angeschlossen werden.

1.1 Spezifikation

Artikel-Bezeichnung	EDT100BRD
Artikel-Nummer	0288.00728
Kennung	EDT100
Modultyp	[x] EDTest-Controller (CTL)
Schnittstelle	[x] ExtC (ExtensionControl)
	Basisadresse: 0
	[x] UserC (UserControl)
	[x] USB
	[x] M60 (Measure-60)
Format	[x] Board 3LE (86,4 x 186,7 mm)

1.2 Testumgebung

Der Testcontroller ist für den Einbau in Testadapter vorgesehen. Folgende Umgebungsbedingungen müssen eingehalten werden:

- Betriebstemperatur: +10 / +35 °C
- Lagertemperatur: -20 / + 60 °C
- Luftfeuchtigkeit: 0 90% nicht kondensierend

Entsprechend der bestimmungsgemäßen Anwendung, dürfen der Einbau und die Bedienung nur von fachkundigem Personal erfolgen. Die Funktionsverantwortung obliegt dem Integrator. Zum ordnungsgemäßen Langzeitbetrieb sind regelmäßige Wartungen und Kalibrierungen notwendig.

1.3 Funktion

MessController:

PSoC1 (Programmable System On Chip), 8Bit, 24MHz, 32KB Flash, Seriennummer

Bedienung:

- Eingabe: Start, OK/NotOK-Taste, NOT-Aus, Hex-Switch (4Bit)
- Anzeige: LEDs: PASS/ FAIL, Run, Power

Schnittstellen:

- USB zum PC-Testsequenzer
- ExtC ExtControl-Schnittstelle für externe EDTest-Module (Host)
- UserC -Schnittstelle f
 ür EDT/USER-Board (externe Bedienungselemente: START-Taste und LEDs f
 ür PASS/FAIL/Run)
- M60 (Measure-Schnittstelle, 60pol Stiftleiste) mit allen Input/Output-Signalen
- Anschlüsse für NOT-Aus und Start
- Versorgung: 24V DC

1.3.1 M60 Measure-Schnittstelle

Analog-Output/ Prüfling-Versorgung:

- Spannungsquelle (PS): 0..12V (9Bit/ 30mV), max. 100mA, geschaltet
 - 0..10V (9Bit/20mV), max. 10mA (A_OUT_PS parallel zur PS)
- Analog-Out (A_OUT): 0..10V (9Bit/20mV), max. 10mA
- Festspannungen: 5V, 15V, 24V (je 100mA)

Kommando-Beispiele: PS 5V ON, PS ON, PS OFF

Digital - Input/Output:

- 8x IO/TTL (0/5V), lout max. 25mA
- 4x UIO (Universal-IO): Input: TTL (Schaltschwelle: ca. 2,1V),
 - Output: Open-Koll. max. 5V, 25mA

Kommando-Beispiele: D #7 1, DU #3 0

Digital - Schnittstellen:

• Seriell, TTL, max. 115,2KBaud, ASCII-Protokoll

• I2C-Bus, Standard-Protokoll (100kHz)

Kommando-Beispiele: SD_UART, 12C

Signal-Generatoren:

• Pulse-Weiten-Generator auf IO/TTL (3Hz..1,5kHz) Kommando-Beispiele: PWM 100Hz 25% ON, PWM OFF,...

Analog - Input:

• ADC 14Bit 0..4V/40V DC-Messung, prog. Spannungsteiler (/1, /10), Verstärker (x1,x2,x8) *Kommando-Beispiele:* A_CTL D1 G1, A14

Relais - Multiplexer:

• 3x 2xUM Signalrelais, max. 48V, 1A Kommando-Beispiele: R #3 1

2 System-Schnittstellen

siehe auch Klemmenplan

2.1 Versorgung

USB, Stecker Typ A, für Messcontroller. 5V, maximal 500mA.

24V DC: Einspeisung über Hohlsteckerbuchse X20 (6x1,95mm, Plus am Mittelkontakt) oder Steckklemme X13 (Pin 1: -, Pin 2: +) Stromaufnahme abhängig von Geräten an ExtControl Schnittstelle und PS: max. 3A

Die Eigenversorgung für reine +5V Digitalanwendungen kann aus der USB Versorgung erfolgen. Dafür muss die USB-Spannung vom PC über CBUS3 eingeschaltet werden.

Für analoge Funktionen (Spannungsmessung, Spannungen erzeugen, +15V und +24V Festspannungen) ist die 24V Versorgung nötig. Bei vorhandener 24V Versorgung leuchtet LED Power 24VDC.

Für die Versorgung elektronischer Schaltungen stehen folgende Versorgungsspannungen zur Verfügung:

- +5V fest, max. 2,5A (nur bei Versorgung aus 24V, sonst max. 300mA)
- +15V fest, max. 100mA
- +24V fest, max. 1,8A (Bei entsprechendem externen Netzteil)

Die Spannungen sind nicht strombegrenzt und nicht kurzschlussfest. Diese Spannungen können nicht geschaltet werden.

Die Versorgungsspannungen sind durch selbstrückstellende Sicherungen geschützt.

OK

LED blau

LED gelb

2.2 Bedienelemente

•	Taste für Start	START

- Taste für OK •
- Taste für Nicht OK
 - NOK Taste für Not-Aus Emerg.Stop
- Power-Anzeige (5V OK):
- RUN-Anzeige: •
- Status-Anzeige: •

 - PASS: FAIL: 0
 - Hex-Switch 4Bit

Duo LED grün Duo LED rot SW3, bitweise aktivierbar über X15..X18

2.3 Not-Aus und Start (X16)

Die Not-Aus-Funktion (EPO: Emergency Power Off) kann über die Emerg.Stop-Taste, eine an X16 angeschlossene Taste oder über an die User-Schnittstelle X1 angeschlossene Taste ausgelöst werden.

Das Signal wird physikalisch zu allen Prüfling-Quellen und den Extension-Boards geleitet, so dass diese die Leitung auswerten und die Quellen abschalten können.

Bei Not-Aus wird sowohl eine Hardware-Abschaltung (entsprechend Kommando SHUT_OFF), als auch ein Aufruf der Funktion TS_Error durchgeführt.

Der Start des Testprogramm-Ablaufs kann über die START-Taste, eine an X16 angeschlossene Taste oder über an die User-Schnittstelle X1 angeschlossene Taste ausgelöst werden.

Steckverbinder:X16Signal(e):EPO, STARTSicht:Steck-Klemmleiste Oben

4	3	2	1
START- Eingang	START-Masse	EPO-Eingang	EPO-Masse

2.4 PC/USB (X19)

USB 2.0 Client zum PC zur Steuerung durch EDTest.

Der EDTest-Controller meldet sich unter Windows in der Systemsteuerung als "WesTest EDT100" an (VID: 0x403, PID: 0xA980). USB-Treiber/ Protokoll: D2XX-Driver.

Über USB-IOs (FTDI-CBUS) können folgende Funktion direkt ausgelöst werden:

 Reset EDTest-Controller: alle Quellen, Relais usw. ausschalten (Not-Aus Funktion vom PC/Testprogramm)

Über USB-IOs (FTDI-CBUS und RS232) können folgende Funktion direkt erkannt werden:

- DCD: Start-Taste am EDTest Controller betätigt
- DSR: Not-Aus Taste am EDTest Controller betätigt
- RI: ExtensionControl Eingang 0: Eingang in PC
- CTS: ExtensionControl Eingang 1: Eingang in PC
- CBUS0: ExtensionControl Ausgang 0: Ausgang aus PC, aktiv high
- CBUS1: Reset EDTest-Controller: Ausgang aus PC, aktiv high
- CBUS2: ExtensionControl Ausgang 1: Ausgang aus PC, aktiv high
- CBUS3: Freischaltung Spannung für EDT100, Ausgang, aktiv low
- CBUS4: Umschaltung senden/empfangen RS485: Ausgang

2.5 UserC User-Schnittstelle (X1)

Über die User-Schnittstelle können die auf der Leiterplatte vorhandenen Bedienungselemente bei Bedarf auch extern angeschlossen werden. Die Anzeigen und Tastenfunktionen liegen in diesem Fall parallel.

Steckverbinder:	X1
Signal(e):	User-Schnittstelle
Sicht:	Stiftwanne Oben

2	4	6	8	10	12	14
+15V	RUN LED	FAIL LED	NOK SWITCH	START SWITCH	SCL	GND
+5V	+24V	PASS LED	OK SWITCH	EPO SWITCH		SDA
1	3	5	7	9	11	13

2.6 M60 Measure-Schnittstelle (X2)

Auf dem MeasureBus stehen alle Instrumente auf der Stiftleiste zur Verfügung. Darüber hinaus liegen die wichtigsten Signale auch an den Steck-Klemmverbindern X3 bis X9 an.

Steckerbelegung siehe Anhang

2.7 ExtC ExtensionControl (X10)

An die ExtControl-Schnittstelle können die EDTest-Extensions (Testadapter (TA), ExtensionBoards (ExtB), ExtensionControl-Boards (ExtC) und ExtensionModule (ExtM)) angeschlossen werden.

Der ExtControl-Bus (RS485) wird zu Identifikation und Steuerung der Instrumente verwendet. Zur Identifikation werden mit dem "INFO"-Kommando mindestens folgende Informationen von der EDTest-Ablaufsteuerung abgefragt: Kennung, HW-Version, SW-Version, Seriennummer.

Die Adressierung der Extensions erfolgt protokollgesteuert und kann der Dokumentation zur EDTest-Ablaufsteuerungssoftware entnommen werden.

Neben der Übertragung von Kommandos wird die Versorgung der Extension über den Bus geschaltet.

Steckverbinder:	X10
Signal(e):	ExtensionControl
Sicht:	Stiftwanne Oben

15	13	11	9	7	5	3	1
+24V	OUT1	EPO_IN	INO	+5V	RS485 B	RS485 A	GND
+24V	EPO_OUT	OUTO	IN1	+5V	START		GND
16	14	12	10	8	6	4	2

2.8 Programmier-Schnittstelle (X11)

Über die Programmierschnittstelle kann der Messcontroller mit einer Firmware programmiert werden.

Notwendige Programmier-Werkzeuge: Cypress PSoC Designer und MiniProg1 CY3217

Steckverbinder:	X11
Signal(e):	PSoC ISSP / Taster
Sicht:	Stiftleiste Oben

5	4	3	2	1
SDATA OK SWITCH	SCLK NOK SWITCH	XRES	GND	+5V

2.9 Hex-Switch und Jumper Block (X15..X18)

Der Hex-Switch (SW3) kann mittels der Jumper X15..X18 auf die Digital I/Os (D0..D3) geschaltet werden. Bei gezogenen Jumpern hat der Switch keine Funktion. X15: D0 <-> Bit 0 LSB von S3 X16: D1 <-> Bit 1 X17: D2 <-> Bit 2 X18: D3 <-> Bit 3 MSB von X3

3 System-Kommandos

Der Controller unterstützt zahlreiche Kommandos, zur direkten Steuerung der Messelektronik. Mit einem Update der Controller-Firmware können weitere Kommandos in den Controller geladen werden.

(Die **fett** geschriebenen Kommandos sind in der aktuellen Controller-Firmware implementiert, alle anderen sind optional)

3.1 System

INFO	Status von Controller abfragen
Kommando:	INFO
Ergebnis:	FW <fw></fw>
Erg. Kommentar:	EDT100 HW <hw> SN<serialnumber></serialnumber></hw>
Variable:	fw
Beschreibung:	Firmware Version EDTest Gerät
Bereich:	n.n.nn
Variable:	hw
Beschreibung:	Hardware Version(en) EDTest Gerät
Bereich:	n.nn
Variable:	serialnumber
Beschreibung:	Seriennummer EDTest Gerät
Bereich:	12stellig Hexadezimal

RESET	Reset des EDTest-Controllers	
Kommando:	RESET	
Ergebnis:	OK	

CONFIG	Konfiguration des Controllers
Kommando:	CONFIG
Ergebnis:	<es> <on off=""></on></es>
Erg. Kommentar:	OK
Wert:	ES
Beschreibung:	Emergency Stop / Not-Halt

Wert: Beschreibung:	ON Not-Halt Eingang führt bei Betätigung einen Reset der Baugruppe aus
Wert: Beschreibung:	OFF Not-Halt Eingang hat bei Betätigung keine Auswirkungen auf die Baugruppe

3.2 Speicher

MNV	Lesen/Schreiben des nichtflüchtigen Speichers (Non-Volatile- Memory) des EDTest Geräts
Kommando: Parameter Block 1: Ergebnis:	MNV <add> [byte] <rec_byte></rec_byte></add>
Variable: Beschreibung: Bereich:	add Adresse User Bereich: 0x800xDF (96 Byte) Gesamt: 0x000xDF (224 Byte)
Variable: Beschreibung: Bereich:	byte Zu schreibendes Datenbyte 0x000xFF
Variable: Beschreibung: Bereich:	rec_byte Empfangenes Datenbyte 0x000xFF
Info:	Die Schreiboperation schreibt zunächst und liest dann die geschriebene Speicherstelle aus und liefert diese als Ergebnis zurück.
Achtung:	Es darf nur der User-Bereich benutzt werden. Ansonsten können interne Abgleichdaten des Gerätes verloren gehen!
Beispiel: Beschreibung:	MNV 128 \rightarrow 12 Lesen von Adresse 128. Ergebnis 12
Beispiel: Beschreibung:	MNV 0x80 0x45 → 69 Wert 69 auf Adresse 0x80 schreiben. Lesen von Adresse 0x80. Ergebnis 69.

NAME	Schreiben des Benutzerdefinierten Namens in das EDTest Gerät
Kommando:	NAME
Parameter Block 1:	[name]
Ergebnis:	OK
Variable:	name
Beschreibung:	Name bzw. ASCII-String. Maximal 10 Zeichen.
Info:	Wird kein Name angegeben, so wird der bisherig gespeicherte Name gelöscht
Info:	Leerzeichen sollten vermieden werden
Beispiel:	NAME TEST → OK
Beschreibung:	Benutzerdefinierten Namen "TEST" speichern
Beispiel:	NAME → OK
Beschreibung:	Benutzerdefinierten Namen löschen

4 Kommandos

4.1 Spannungsquelle

PS	Spannungsquelle parametrieren (setzen von Spannung)
Kommando:	PS
Parameter Block 1:	<v> [ON]</v>
Ergebnis:	OK
Variable:	v
Beschreibung:	Sollspannung
Bereich:	212V
Wert:	ON
Beschreibung:	Schaltet Spannungsquelle sofort ein
Info:	Die Entprellzeit für das Ausgangsrelais wird beim Einschalten bereits abgewartet
Steckerbelegung:	PS+ Ausgangsspannung GND GND
Beispiel:	PS 12V ON → OK
Beschreibung:	Setzen von PS auf 12V, Spannungsquelle einschalten
PS ON	Spannungsquelle einschalten
Kommando:	PS_ON
Ergebnis:	OK
Info:	Falls vor dem PS_ON Kommando keine Parametrierung über das Kommando PS erfolgt ist, schaltet die PS mit 2V Sollspannung ein.
Info:	Die Entprellzeit für das Ausgangsrelais wird beim Einschalten bereits abgewartet
Beispiel:	PS_ON → OK
Beschreibung:	PS einschalten

PS_OFF	Spannungsquelle ausschalten
Kommando:	PS_OFF
Ergebnis:	OK
Beispiel:	PS_OFF → OK
Beschreibung:	PS ausschalten

4.2 Analogausgang

AOUT	Analogausgang para	ametrieren (setzen von Spannung)
Kommando: Parameter Block 1: Ergebnis:	AOUT <v> OK</v>	
Variable: Beschreibung: Bereich:	v Sollspannung 010V	
Steckerbelegung:	AOUT GND	Ausgangsspannung GND
Beispiel: Beschreibung:	AOUT 7V → OK Setzen von AOUT au	uf 7V

4.3 Digital – I/O

D	TTL-IO Read/Write Einzelbit
Kommando:	D
Parameter Block 1:	# <ch> [bit]</ch>
Ergebnis:	<rec_bit></rec_bit>
Variable:	ch
Beschreibung:	Digitalpin
Bereich:	07
Variable:	bit
Beschreibung:	Áusgangsbit
Bereich:	0 / 1 (0 = 0V, 1 = 5V)
Variable:	rec_bit
Beschreibung:	Eingangsbit
Bereich:	0 / 1 (0 = low, 1 = high)
Info:	Es wird zunächst der Ausgangswert gesetzt und danach der Status des Eingangs eingelesen
Steckerbelegung:	D <ch></ch> Digitalpin
Beispiel:	D #7 1 \rightarrow 1
Beschreibung:	Pin D7 auf 5V. Lesen von D7. Ergebnis Pin D7 high.
	1

D8	ITL-IO Read/Write 8-Bit Register
Kommando:	D8
Parameter Block 1:	[byte]
Ergebnis:	<rec_byte></rec_byte>
Variable:	byte
Beschreibung:	Áusgangsbyte
Bereich:	0x000xFF (0 = 0V, 1 = 5V)
Variable:	rec_byte
Beschreibung:	Eingangsbyte
Bereich:	0x000xFF (0 = low, 1 = high)

Info:	Es wird zunächst der Ausgangswert gesetzt und danach der Status des Eingangs eingelesen	
Steckerbelegung:	D07	Digitalport 0
Beispiel: Beschreibung:	D8 $0xF0 \rightarrow 0xF3$ Digitalport setzen. D7, D6, D5 und D4 auf 5V. Lesen von Digitalport. Ergebnis Pin D7, D6, D5, D4, D1 und D0 high.	

D_CTL	TTL-IO Control-Register parametrieren (Output ein/aus, Sonderfunktion ein/aus)		
Kommando: Parameter Block 1: Ergebnis:	D_CTL [DIR <dir_byte>] [SEL<sel_byte>] OK</sel_byte></dir_byte>		
Variable: Beschreibung: Bereich:	dir_byte Steuerbyte zur Aktivierung des Ausgangstreibers 0x000xFF (0 = Output disable, 1 = Output enable)		
Variable: Beschreibung: Bereich:	sel_byte Steuerbyte für Ausgangs-Spezialfunktion (PWM) 0x000xFF (0 = Output Normalfunktion, 1 = Output Spezialfunktion)		
Info:	Die Voreinstellung nach Systemstart ist "Output disable" und alle Ein- und Ausgänge auf Normalfunktion		
Steckerbelegung:	D07 Digitalport 0		
Beispiel: Beschreibung:	D_CTL DIR0x05 SEL0x05 → OK Digitalport parametrieren. D0, D2 Ausgang aktiv. D0, D2 Spezialfunktion.		

DU	Universal-IO Read/Write Einzelbit
Kommando:	DU
Parameter Block 1:	# <ch> [bit]</ch>
Ergebnis:	<rec_bit></rec_bit>
Variable:	ch
Beschreibung:	Digitalpin
Bereich:	03

Variable: Beschreibung: Bereich:	bit Ausgangsbit 0 / 1 (0 = Tri-State, 1	= 0V)
Variable: Beschreibung: Bereich:	rec_bit Eingangsbit 0 / 1 (0 = low, 1 = hig	h)
Info:	Es wird zunächst der des Eingangs eingele	Ausgangswert gesetzt und danach der Status esen
Steckerbelegung:	DU <ch></ch>	Universal I/O
Beispiel: Beschreibung:	DU #0 1 → 0 Pin DU0 auf low zieh	en. Lesen von D0. Ergebnis Pin D0 low.

DU8	Universal-IO Read/Write 8-Bit Register
Kommando: Parameter Block 1: Ergebnis:	DU8 [byte] <rec_byte></rec_byte>
Variable: Beschreibung: Bereich:	byte Áusgangsbyte 0x000x0F (0 = Tri-State, 1 = low)
Variable: Beschreibung: Bereich:	rec_byte Eingangsbyte 0x000x0F (0 = low, 1 = high)
Info:	Es wird zunächst der Ausgangswert gesetzt und danach der Status des Eingangs eingelesen
Steckerbelegung:	DU07 Digitalport 0
Beispiel: Beschreibung:	DU1 $0x0F \rightarrow 0x03$ Digitalport setzen. DU3, DU2, DU1 und DU0 auf low. Lesen von Digitalport. Ergebnis Pin DU1 und DU0 high.

DU_CTL	Universal-IO Control-Register parametrieren (Input ein/aus, Sonderfunktion ein/aus)
Kommando: Parameter Block 1: Ergebnis:	DU_CTL [DIR <dir_byte>] [SEL<sel_byte>] OK</sel_byte></dir_byte>
Variable: Beschreibung: Bereich:	dir_byte Steuerbyte zur Aktivierung des Ausgangstreibers 0x000x0F (0 = Output disable, 1 = Output enable)
Variable: Beschreibung: Bereich:	sel_byte Steuerbyte für Ausgangs-Spezialfunktion (PWM) 0x000x0F (0 = Output Normalfunktion, 1 = Output Spezialfunktion)
Info:	Die Voreinstellung nach Systemstart ist "Output disable" und alle Ein- und Ausgänge auf Normalfunktion
Steckerbelegung:	DU03 Digitalport 0
Beispiel: Beschreibung:	DU_CTL DIR0x00 SEL0x05 → OK Digitalport 0 parametrieren. DU0DU3 nur Eingang. DU0, DU2 Spezialfunktion.

4.4 Digital – Schnittstellen

I2C	100kHz I ² C-BUS
Kommando:	I2C
Parameter Block 1:	<add> [W <byte> [byte] [byte] …] [R<count>]</count></byte></add>
Ergebnis:	OK / [rec_byte] [rec_byte] …
Variable:	add
Beschreibung:	7 oder 10Bit Slave-Adresse (Ohne R/W Bit)
Bereich:	01024
Wert:	W
Beschreibung:	Write-Befehl. Zu schreibende Bytes müssen folgen.
Variable:	byte
Beschreibung:	Zu schreibendes Datenbyte. Maximal 30.
Bereich:	0x000xFF
Wert:	R
Beschreibung:	Read-Befehl. Anzahl zu lesender Bytes muss angehängt werden.
Variable:	count
Beschreibung:	Anzahl der Bytes die gelesen werden sollen
Bereich:	130
Variable:	rec_byte
Beschreibung:	Empfangenes Datenbyte. Maximal 30
Bereich:	0x000xFF
Info:	Ergebnis ist FALSE wenn Kommunikation fehlschlägt
Steckerbelegung:	SDASDA OutSCLSCL Out
Beispiel:	I2C 0x53 W 0x12 0xFF \rightarrow OK
Beschreibung:	Schreiben von zwei Bytes (0x12 und 0xFF) auf Adresse 0x53
Beispiel:	I2C 0x53 R3 → 0x01 0x02 0x03
Beschreibung:	Lesen von drei Bytes von Adresse 0x53. Ergebnis 0x01 0x02 0x03

4.5 Signalgeneratoren

PWM	PWM-Signal-Generator parametrieren
Kommando:	PWM
Parameter Block 1:	<freq> <duty_cycle> [INV] [ON]</duty_cycle></freq>
Ergebnis:	OK
Variable:	freq
Beschreibung:	PWM-Frequenz
Bereich:	5Hz1,5kHz
Variable:	duty_cycle
Beschreibung:	Tastverhältnis
Bereich:	0100% (0% = 0% an, 100% = 100% an)
Wert:	INV
Beschreibung:	Invertiert Tastverhältnis
Wert:	ON
Beschreibung:	Schaltet PWM Generator sofort ein
Info:	Für die Nutzung D0 mit D_CTL auf Spezialfunktion und "Output enable" schalten.
Steckerbelegung:	D0 PWM Kanal TTL Pegel
Beispiel:	PWM 1kHz 50% ON → OK
Beschreibung:	PWM Einheit 1 mit 1kHz und 50% Tastverhältnis sofort einschalten
PWM ON	PWM-Signal-Generator einschalten
Kommando:	PWM_ON
Ergebnis:	OK

Beispiel:PWM_ON → OKBeschreibung:PWM Einheit einschalten

PWM_OFF	PWM-Signal-Generator ausschalten
Kommando:	PWM_OFF
Ergebnis:	OK
Beispiel:	PWM_OFF → OK
Beschreibung:	PWM Einheit ausschalten

4.6 Relais-Multiplexer

R	Relaiszustand (3x Eir	nzelrelais 2xUM) setzen/abfragen
Kommando: Parameter Block 1: Ergebnis:	R # <ch> [bit] <rec_bit></rec_bit></ch>	
Variable: Beschreibung: Bereich:	ch Relais 13	
Variable: Beschreibung: Bereich:	bit Relais Stellung 0 / 1 (0 = Ruhezustan	d, 1 = Betätigt)
Variable: Beschreibung: Bereich:	rec_bit Relais Stellung 0 / 1 (0 = Ruhezustan	d, 1 = Betätigt)
Info:	Die Entprellzeit für da abgewartet	s Relais wird beim Ein- Ausschalten bereits
Steckerbelegung:	NO <ch></ch> 1 NC <ch></ch> 1 COM <ch></ch> 1 NO <ch></ch> 2 NC <ch></ch> 2 COM <ch ></ch > 2	Schließer-Kontakt 1 Öffner-Kontakt 1 Wechsler-Kontakt 1 Schließer -Kontakt 2 Öffner-Kontakt 2 Wechsler-Kontakt 2
Beispiel: Beschreibung:	R #2 1 → 1 Relais 2 anziehen. Er	gebnis: angezogen.

4.7 Analog – Messtechnik

A_CTL	Parametrierung Messverstärker für 14Bit-Wandler
Kommando: Parameter Block 1: Ergebnis:	A_CTL G <gain> D<divide> OK</divide></gain>
Variable: Beschreibung: Bereich:	gain Verstärkung 1 / 2 / 8
Variable: Beschreibung: Bereich:	divide Vorteiler 1 / 10
Info:	Spannungseingang: 0+4V, bei 1:1 Messung (G1 D1)
Info:	Messergebnisse vom A14 Kommando beachten die Verstärkungs- und Teilereinstellungen und liefern die tatsächlich am Stecker anliegende Spannung zurück.
Info:	Die Entprellzeit für die Eingangsrelais wird beim Einschalten bereits abgewartet
Achtung:	Sollen Spannungen über +4V gemessen werden, so ist ein Vorteiler (Dn) zu verwenden. Ansonsten kann das Gerät beschädigt werden!
Steckerbelegung:	MEAS+ Positives Potential (Single Ended) AGND GND
Beispiel: Beschreibung:	A_CTL G2 D1 → OK Messung auf MEAS+ gegen AGND mit Verstärkung 2.
Beispiel: Beschreibung:	A_CTL G1 D10 → OK Messung auf MEAS+ gegen AGND mit Teiler 10.

A14	Lese einzelnen Wert von 14Bit-Wandler
Kommando:	A14
Ergebnis:	<meas></meas>
Variable:	meas
Beschreibung:	Messergebnis
Info:	Messverstärker-Parametrierung und Kanalauswahl mit A_CTL
Beispiel:	A14 → 12
Beschreibung:	Gleichspannungsmessung. Ergebnis: 12V.

4.8 Serielle Schnittstellen

SD_UART	Serielle Schnittstelle
Kommando: Parameter Block 1: Parameter Block 2: Ergebnis: Erg. Kommentar:	SD_UART [byte] [byte] [string] [rec_byte] [rec_byte] / FALSE [rec_string]
Variable: Beschreibung: Bereich:	byte Zu sendendes Datenbyte. Maximal 50. 0x000xFF
Variable: Beschreibung:	string Zu sendender ASCII-String. Maximal 50 Zeichen.
Variable: Beschreibung: Bereich:	rec_byte Empfangenes Datenbyte. 0x000xFF
Variable: Beschreibung:	rec_string Empfangener ASCII-String.
Info:	Parameter Block 2 hat Vorrang gegenüber Parameter Block 1. Eine Kombination ist nicht möglich.
Info:	Ergebnis ist FALSE wenn innerhalb von ca. 300ms nichts empfangen wird, oder Empfangsbuffer leer ist
Info:	Sollen keine Daten gesendet werden, so wird nur der Empfangsbuffer gelesen
Info:	Nach lesen des Empfangsbuffers wird dieser gelöscht
Steckerbelegung:	UART TXD Sendeleitung UART RXD Empfangsleitung
Beispiel: Beschreibung:	SD_UART 0x31 0x32 → FALSE ASCII String "12" senden. Ergebnis: Keine Antwort empfangen
Beispiel: Beschreibung:	SD_UART → 0x31 0x32 Nur Empfangsbuffer lesen. Ergebnis: ASCII String "12" empfangen

SD_UART_SET	Seriell-Schnittstellen Parametrierung
Kommando:	SD_UART_SET
Parameter Block 1:	<baud> <parity></parity></baud>
Ergebnis:	OK
Variable: Beschreibung: Bereich:	baud Baudrate 300 / 600 / 1200 / 2400 / 4800 / 9600 / 19200 / 38400 / 57600 / 115200
Variable:	parity
Beschreibung:	Parity
Bereich:	O / E / N (O= odd, E = even, N = keine Parity)
Info:	Die Voreinstellung nach Systemstart ist 19200 N
Beispiel:	SD_UART_SET 9600 N → OK
Beschreibung:	9600 Baud, keine Parity

4.9 User – Interface

UI_BUTTON	Auswertung der Tasten
Kommando:	UI_BUTTON
Ergebnis:	<ok nok=""> / FALSE</ok>
Wert:	OK
Beschreibung:	OK Taste wurde betätigt
Wert: Beschreibung:	NOK Taste wurde betätigt
Info:	Die Tastenereignisse werden im EDTest Gerät gespeichert, bis sie abgerufen werden. Nach Abruf werden sie gelöscht.
Info:	Wurden mehrere Tasten betätigt, so werden die Ereignisse mit Leerzeichen getrennt hintereinander ausgegeben.
Info:	Ergebnis ist FALSE wenn keine Taste betätigt wurde
Steckerbelegung:	OK SWITCHOK Knopf (low aktiv)NOK SWITCHNOK Knopf (low aktiv)
Beispiel:	UI_BUTTON → NOK
Beschreibung:	Seit letztem Funktionsaufruf von UI_BUTTON wurde NOK betätigt
	LEDs an Controller-Front ein/ausschalten
Kommando:	UI_LED
Parameter Block 1:	<fail nok="" ok="" pass="" run=""> <on_off></on_off></fail>
Ergebnis:	OK
Wert:	FAIL
Beschreibung:	Fail LED am EDTest-Controller
Wert:	PASS
Beschreibung:	Pass LED am EDTest-Controller
Wert:	RUN
Beschreibung:	Run LED am EDTest-Controller
Wert:	OK
Beschreibung:	OK-Taste LED am User-Board

Wert:	NOK
Beschreibung:	NOK-Taste LED am User-Board
Variable:	on_off
Beschreibung:	LED ein- oder ausschalten
Bereich:	1 / 0 (1 = einschalten, 0 = ausschalten)
Info:	Funktion wird direkt von EDTest verwendet. Unsachgemäße Verwendung kann die Testabläufe beeinflussen!
Beispiel:	UI_LED PASS 1 → OK
Beschreibung:	Pass grün beleuchten

5 Installation

siehe EDTest-Installationsanleitung

6 Anhang

- 6.1 Blockschaltbild
- 6.2 Schaltplan
- 6.3 Bestückungsdruck
- 6.4 MeasureBus Steckerbelegung

Steckverbinder:	X2
Signal(e):	MeasureBus
Sicht:	Stiftwanne oben / Lötaugen Platinenoberseite

2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50	52	54	56	58	60
+5V		+15V		+24V	R1 NO1	R1 COM2	R1 NC2	R2 COM1	R2 NC1	R2 NO2	R2 COIL	R3 NO1	R3 COM2	R3 NC2	D0	D2	D4	D6	DU0	DU2	UART TXD	SDA		PS_R COIL	MEAS+	AGND	AOUT_PS	PS_R NC	PS
AGND	AGND	GND	GND	GND	R1 COM1	R1 NC1	R1 NO2	R1 COIL	R2 NO1	R2 COM2	R2 NC2	R3 COM1	R3 NC1	R3 NO2	R3 COIL	D1	D3	D5	D7	DU1	DU3	UART RXD	SCL		ADC_R COIL	MEAS-	AOUT	PS_R COM	PS_R NO
1	3	5	7	9	11	13	15	17	19	21	23	25	27	29	31	33	35	37	39	41	43	45	47	49	51	53	55	57	59

X2

Signal(e): Sicht:

MeasureBus Stiftwanne unten / Lötaugen Platinenunterseite

60	58	56	54	52	50	48	46	44	42	40	38	36	34	32	30	28	26	24	22	20	18	16	14	12	10	8	6	4	2
PS	PS_R NC	AOUT_PS	AGND	MEAS+	PS_R COIL		SDA	UART TXD	DU2	DU0	D6	D4	D2	D0	R3 NC2	R3 COM2	R3 NO1	R2 COIL	R2 NO2	R2 NC1	R2 COM1	R1 NC2	R1 COM2	R1 NO1	+24V		+15V		+5V
PS_R NO	PS_R COM	AOUT	MEAS-	ADC_R COIL		SCL	UART RXD	DU3	DU1	D7	D5	D3	DI	R3 COIL	R3 NO2	R3 NC1	R3 COM1	R2 NC2	R2 COM2	R2 NO1	R1 COIL	R1 NO2	R1 NC1	R1 COM1	GND	GND	GND	AGND	AGND
59	57	55	53	51	49	47	45	43	41	39	37	35	33	31	29	27	25	23	21	19	17	15	13	11	9	7	5	3	1

Steckverbinder: Signal(e):		verbinder: (e):	X3 MeasureBus Versorgungsspannungen	Stecky Signal	verbinder: l(e):	X4 MeasureBus Relais 1	Steck Signa	verbinder: l(e):	X5 MeasureBus Relais 2	Stecky Signal	verbinder: l(e):
Sicht:			Klemmleiste Oben	Sicht:		Klemmleiste Oben	Sicht		Klemmleiste Oben	Sicht:	
	6	+24V		6	R1 NC2		6	R2 NC2		6	R3 NC2
	5	AGND		5	R1 NO2		5	R2 NO2		5	R3 NO2
	4	+15V		4	R1 COM2		4	R2 COM2		4	R3 COM2
	3	GND		3	R1 NC1		3	R2 NC1		3	R3 NC1
	2	+5V		2	R1 NO1		2	R2 NO1		2	R3 NO1
	1	GND		1	R1 COM1		1	R2 COM1		1	R3 COM1

Steckverbinder: Signal(e):		X7 MeasureBus TTL-I/O	Steck Signa	verbinder: l(e):	X8 MeasureBus I ² C, UART, Universal I/O	Steck Signa	verbinder: l(e):	X9 MeasureBus ADC, PS
Sicht:		Klemmleiste Oben	Sicht:		Klemmleiste Oben	Sicht:		Klemmleiste Oben
8	D7		8	SCL		8	PS R NC	
7	D6		7	SDA		7	PS R NO	
6	D5		6	UART RXD		6	PS R COM	
5	D4		5	UART TXD		5	AGND	
4	D3		4	DU3		4	AOUT	
3	D2		3	DU2		3	MEAS+	
2	D1		2	DU1		2	PS	
1	D0		1	DU0]	1	GND	

X6 MeasureBus Relais 3 Klemmleiste Oben

